Synthesis of 2-phenyl-4H-benzo[d][1,3]oxazin-4-one and Their Biological Activity Against A549 Cancer Cell Line through Methionyl-tRNA Synthetase Inhibition Approach on in-silico Studies.

Dini Kesuma¹, Galih Satrio Putra¹, Tegar Achendo Yuniarta¹, Melanny Ika Sulistyowaty², Siswandoño², Tutuk Budiati²³.
¹Pharmacy Chemistry Department, Faculty of Pharmacy University of Surabaya, Surabaya, Indonesia
²Pharmaceutical Chemistry Department, Faculty of Pharmacy Airlangga University, Surabaya, Indonesia
³Pharmacy Chemistry Department, Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia

Abstract:
Purpose: The research aims to synthesis of 1,3-benzoxazine ring and evaluated their anticancer activity against human lung cancer (A549) and also their molecular docking studies approach, through methionyl-tRNA synthetase inhibition.
Methodology: the successful of synthesis process, obtained 2-phenyl-4H-benzo[d][1,3]oxazin-4-one was evaluated by 1D NMR (¹H-NMR and ¹³C-NMR), FTIR and UV spectra. The biological anticancer activity was evaluated by MTT Assay against human lung cancer (A549). Molecular docking studies was performed by Molegro Virtual Docker (MVD) version 5.5 as a software. The molecule target was docked into the active side on Methionyl-tRNA Synthetase (MRS), that was downloaded from www.pdb.org with PDB; ID 1PG2.
Results: based on all spectra data (¹H-NMR, ¹³C-NMR, FTIR dan UV) obtained 2-phenyl-4H-benzo[d][1,3]oxazin-4-one in very good yield (90 %±2%' n=6), their anticancer activity through MTT Assay Method against A549 Cancer Cell Line by triplicate, obtained IC₅₀= 65.43 ±2.7 μg/mL and the result of molecular docking studies their rerank score -76.04 Kcal/mol, more higher than its native ligand (-93.50 Kcal/mol).
Keywords: synthesis, anticancer, in-silico, MTT Assay, 1,3-benzoxazine ring

1.Introduction.
Cancer is the biggest health problem to human both in the developed and developing countries (Ferley et al., 2019). According to the World Health Organization (WHO) 2015, the top 10 diseases causing the most deaths worldwide, one of them is lung cancer. Lung cancer ranks fifth out of 10 deadly diseases in the world. Based on existing data from 2000-2015 there was an increase in mortality of around 12 million to 17 million people each year ((Pietrangelo & Holland, 2017; Kesuma et al., 2018). Based on this problem, many researchers have been trying to investigate medicines to treat cancer because all medicines to treat cancer still have so many side effects, some could develop other cancer type (Joseph et. al., 2008).
Benzoxazine are compounds that are quite interesting to study, in addition to their unique molecular structure (hetertrocyclic consist of atoms C,N and O), also because it is known that benzoxazine derivatives have various biological activities (Coppola, 1999). Several studies have reported benzoxazine derivatives have anticancer activity (Bharathkumar et al., 2015; Zilifdar et al., 2014; Rudyanto at. al., 2015; Putra et al., 2016). Some of research were reported 1,3-benzoxazine ring has potential anticancer activity on inhibiting the growth of lung cancer through Methionyl-tRNA Synthetase Inhibition (Bharathkumar et al., 2015). MRS is a group enzyme have a function for transferring a specific amino acid to cognate tRNA to form aminoacyl-tRNA. This enzyme play rule for carrying the respective amino acid to the site of protein synthesis to begin translation at the initiation codon (Katzung et al., 2009; Finkel et al., 2009; Lüllmann et al., 2000). Increasing activity of MRS was reported in many evidence human cancers cell therefore MRS to be one targeted some of drug discovery to reduce cancers cell survival, proliferation and metastasis.
In this research, we synthesized 2-phenyl-4H-benzo[d][1,3]oxazin-4-one, that were evaluated its activity against human lung cancer cells by in-vitro study through MTT Assay method and its in-silico study was determined by observing the energy binding of the compound while interacting with Methionyl-tRNA Synthetase (MRS). In signal transduction path of cancer, Methionyl-tRNA Synthetase (MRS) has an important role for the growth of cancer cells. Therefore by constructing compound which inhibited this enzyme, we have great opportunity to generate anticancer agents

2.Material and Method
2.1Synthesis
All chemicals (anthranilic acid, benzoyl chloride, NaHCO₃), solvents (Ethanol 90 %, ethyl acetate, n-hexane), and catalyst (pyridine) were purchased from commercial branded such as Sigma Aldrich and Merck. Reactions were monitored with TLC
silica gel 60, GF 254, 0.2 mm layer thickness was purchased from Merck. Mobile phase for TLC using n-hexane : ethyl acetate (1:1) and the spots were visualized under UV-ray (254 nm). Melting points was measured with an Electrothermal melting point apparatus innotech DMP-600. IR spectra was obtained using a Jasco FT-IR 5300 Perkin-Elmer spectrometer using KBr disks as media. 1D-NMR(1H- NMR and 13C-NMR) spectra were obtained on JEOL JNM-ECS 600 (1H-NMR: 600 MHz, 13C-NMR: 151 MHz). We used DMSO-d6 as solven for 1H-NMR and 13C-NMR analysis. Chemical shifts were measured relative to internal standard Tetramethylsilane TMS (d: 0). MS spectra was measured with a JEOL JMS 600 spectrometer by using the ESI methods.

Anthranilic acid (0.05 mol) was dissolved in 10 mL pyridine. Benzoyl chloride was dropped wisely at cool temperature (0°C) with constant stirring. After stirring for 1 hour at about room temperature (25°C), add the saturated bicarbonate acid (10%). Addition of NaHCO₃ solution (10%) was continued until the effervescence due to the evolution of carbon-dioxide ceased. Add some purified water and separated solid phase and liquid phase using Buchner. The purifcation of the solid phase was carried out by recrystallization using ethanol 90% : aceton (5:1) (Noolvi et al., 2011; Noolvi & Patel., 2013; Rajasekhar et al., 2016; Putra et al., 2017).

Figure 1. Synthesis of 2-phenyl-4H-benzo[d][1,3]oxazin-4-one from anthranilic acid (1) and benzoyl chloride (2)

2.2MTT Assay against Human lung cancer cells (A549).

Human lung cancer cells with code id A549 were got from Riken Cell Bank (Japan), and it was cultivated in an enhanced medium. The cell culture medium was used in this experiment was combination of 10% heat inactive FBS (Fetal Bovine Serum), DMEM (Dulbecco’s modified Eagle’s Medium), Amphotericin B (5.6 μg/mL) and Kanamycin (100 μg/mL) both of antibiotics function to sterile the media, while 3 days-old cells was growth as test material. 1.00 μL of samples with the range of concentration 100-25 ppm (1% final concentration in DMSO solution) and 99.00 μL of A549 cells (5×10⁵cells) were incubated with into a 96-well plate at 37°C for 3 days or 72 hours. After removing medium and added 100.00 μL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), incubated for another 1.5 hours at CO2 incubator. Final step was replaced MTT solution with DMSO. The absorbance was scanned at 540 nm with a 2300 EnSpire Multimode plate reader by PerkinElmer, Inc. We was used Doxorubicin as standard in positive control. The result of MTT Assay was performed in triplicate and reported as mean ± standard deviation.

2.3Molecular docking study

In-silico study was performed by using MVD (Molegro® Virtual Docker version 5.5).CS ChemBioDraw Ultra вер 11.0 (Cambridge Soft) was used to prepare compound 3 to building 3D chemical structure and to optimize their geometry structure were performed using MMFF94 energy (Thomas, 1996). Compound 3 was docked into the active side on Methionyl-tRNA Synthetase (MRS). MRS is a group enzyme have a function for transferring a specific amino acid to cognate tRNA to form aminoacyl-tRNA. They important play rule for carrying the respective amino acid to the site of protein synthesis to begin translation at the initiation codon. Increasing activity of MRS was reported in many evidence human cancers cell therefore the human MRS up-regulation in cancer renders it as a unique target and effective strategy to design inhibitors to reduce cancers cell survival, proliferation and metastasis (katzung et al., 2009; Bharathkumar et al., 2015). The structure of MRS enzyme (PDB ID: 1PG2) was downloaded from the Protein Data Bank (www.rcsb.org). The validation of docking was carried out by redocking its native ligand of the enzyme, namely 2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol into its active site (Crepin et al., 2003). Criteria of acceptance is set with the value of Root Mean Square Deviation (RMSD) least than or equal 2.0 Å. After redocking process, the compound 3 was docked into active site of MRS enzyme. The binding affinity between ligand and enzyme (docking score) was evaluated using Rerank Score. Rerank score is one of the main parameters in molecular docking study. It is interaction energy between ligand and receptor, they was calculated base on external and internal ligand interaction with their receptor (Thomsen & Christensen., 2006). The smaller Rerank score value means the more stable ligand-receptor bonding, which predicted as a higher biological activity
3. Result and Discussion

3.1 Synthesis

The reaction between anthranilic acid (1) and benzoyl chloride (2), they were dissolved in pyridine (free-water solvent) would be successfully synthesized and obtained 2-phenyl-4H-benzo[d][1,3]oxazin-4-one in very good yield (90 ±2% ±n=6). The mechanism of this reaction consist of two steps. The first step for mechanism of reaction is amine functional group of (1) as nucleophile attacks carbonyl center of (2) via SN-acyl (addition following by elimination) see Figure 3. Pyridine as a catalyst plays a role in deprotonation process of the hydrogen atom of amine functional group. This yielded to a tetrahedral intermediate product which continue to form 3’ shown at Figure 3. After that, the second step for mechanism of reaction is pyridine acted as deprotonating agent for carboxylic moiety of 3’ to yield carboxylate anion which then proceeded to attack the resulting amide group intramolecularly (Noolvi et al., 2011; Noolvi & Patel., 2013; Putra et al., 2017). This cyclization resulted to a benzoxazine ring shown at Figure 4.

![Figure 2. Comparison of its native ligand (green) with the doking result simulation (blue) by Molegro Virtual Docker (MVD) software Ver.5.5. The RMSD is 0.84Å](image)

![Figure 3. The first step for mechanism of reaction between anthranilic acid (1) and benzoyl chloride (2) to form 2-benzamidobenzoic acid (3’)](image)
Determination of compound (3) was confirmed by 1D NMR (\(^1\)H-NMR, \(^{13}\)C-NMR), MS, and IR spectral data. The \(^1\)H-NMR spectrum of compound (3) showed peaks in the aromatic region around \(\delta 7.57-8.19\) ppm, indicating the existence of 9 protons of aromatic ring shown at Figure 5. Meanwhile, \(^{13}\)C-NMR similarly showed the presence of two aromatic rings shown at Figure 6. The total of carbon atom are 14. Furthermore, the presence of carbonyl fragment at \(\delta 158.8\) ppm and imine fragment at \(\delta 156.4\) ppm implied the formation of benzoxazine ring. Mass spectroscopy confirmed the compound 3 exhibited molecular weight of 224.07 ([M+H]+) shown at Figure 7, with mass deviation of 0.16 (< 5mmu) from theoretical molecular weight. The fragmentation result confirmed the molecular formula of C\(_{14}\)H\(_9\)O\(_2\)N. Ultimately, infrared spectrum data showed the formation of benzoxazine ring manifested in absorption band at 1764 cm\(^{-1}\) (C=O lactone bond) and 1614 cm\(^{-1}\) (-C=N bond) shown at Figure S8 (Pavia et al., 2009).

Detailed physicochemical and spectral data of the obtained compound of 2-phenyl-4\(\text{H}\)-benzo[1,3]oxazin-4-one

Obtained in white crystals, mp: 118-119\(^{\circ}\)C. \(^1\)H NMR (600 MHz, DMSO-d6) \(\delta 8.18\) (dd, \(J = 7.7, 1.7\) Hz, 2H), 8.14 (dd, \(J = 7.8, 1.6\) Hz, 1H), 7.93 (td, \(J = 7.7, 1.6\) Hz, 1H), 7.70 (d, \(J = 7.9\) Hz, 1H), 7.67 – 7.64 (m, 1H), 7.63 – 7.57 (m, 3H). The total of hydrogen atom are 9 atoms. \(^{13}\)C-NMR (151 MHz, DMSO) \(\delta 158.8, 156.4, 146.2, 136.8, 132.7, 130.0, 128.9\) (2C), 128.5, 128.0, 127.8 (2C), 126.6, 116.9. The total of carbon atom are 14 atoms. FT-IR (KBr) cm\(^{-1}\) : 1764 (C=O lactone); 1599 and 1474 (C=C aromatic); 3040 (=C-H aromatic); 1614 (C=N); 1315 (C-N). ESI-MS m/z, [M+H]+=224. All these spectral data are in agreement with the structure of 2-phenyl-4\(\text{H}\)-benzo[1,3]oxazin-4-one
Figure 5. 1H-NMR spectrum of 2-phenyl-4H-benzo[d][1,3]oxazin-4-one in (600 MHz, DMSO-d6)
3.2 Biological Assay

The result of MTT Assay against Human lung cancer cells (A549), compound (3) has anticancer activity with value of IC$_{50}$ = 65.43 ±2.7 μg/mL as same as another research were reported by Bharathkumar et.al in 2015. Compound (3) have anticancer activity with IC$_{50}$ value least than 100 μg/mL event though doxorubicin as positive control have IC$_{50}$ value (14.61±2.3 μg/mL)
lower than compound (3) see table 1. The core structure of 1,3-benzoxazine ring was still believed have anticancer activity on inhibiting the growth of lung cancer although need optimize with another substituent to increasing potentially their activity.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>65.43 ±2.7</td>
</tr>
<tr>
<td>(Native ligand)</td>
<td>14.61±2.3</td>
</tr>
</tbody>
</table>

Tabel 1. The IC50 value of Human lung cancer cells (A549) growth inhibitory activity

3.3 *In-silico study*
Based on molecular docking result (Table 2; Figure 9), it is shown that compound 3 has rerank score -76.04 ±0.03 Kcal/mol (n=3) more higher than its native ligand rerank score -93.48 ±0.07 Kcal/mol (n=3). Interaction between Compound 3 with Methionyl-tRNA Synthetase (MRS) showed just only steric interactions on residues such as Gly 23; His 24; His 323; Gly 324; Val 326. It is different with interaction between its native ligand with their enzyme, not only steric interactions (His 21 and Glu 27) but also it has hydrogen bond on amino acid residues such as Glu 27; His 28; Gly 294; Asp 296; Val 326, therefore rerank score of its native ligand more lower than compound 3, that means their native ligand more suitable interaction with MRS.

Tabel 2. Molecular docking result on Methionyl-tRNA Synthetase (MRS) active site

<table>
<thead>
<tr>
<th>Compound</th>
<th>Rerank Score (Kcal/mol)</th>
<th>Doked Pose</th>
<th>Hydrogen Bond</th>
<th>Residual Involved</th>
<th>Steric Interaction</th>
<th>Residual Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>-76.04 ±0.03</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>Gly 23; His 24; His 323; Gly 324; Val 326</td>
</tr>
<tr>
<td>(Native ligand)</td>
<td>-93.48 ±0.07</td>
<td>√</td>
<td>5</td>
<td>Glu 27; His 28; Gly 294; Asp 296; Val 326</td>
<td>2</td>
<td>His 21; Glu 27</td>
</tr>
</tbody>
</table>
4. Conclusion
In this research we successfully synthesized 2-phenyl-4H-benzo[d][1,3]oxazin-4-one from starting material from anthranilic acid and benzoyl chloride in very good yields (90 ±2% n=6). The compound of 2-phenyl-4H-benzo[d][1,3]oxazin-4-one shown anticancer activity on inhibiting the growth of human lung cancer cell (A549) with IC_{50} = 65.43 ±2.7 μg/mL even though their anticancer activity lower than Doxorubicin, and also it has rerank score more higher than its native ligand when docked onto Methionyl-tRNA Synthetase (MRS) (PDB code:1PG2). On the other hand, we still believe if the core structure of 1,3-benzoxazine ring has anticancer activity on inhibiting the growth of lung cancer although they need optimize with another substituent to increasing potentially their activity.

Acknowledgement
We thank to Katsuyoshi Matsunami from Hiroshima University for helping us to obtained Human Lung Cancer cells A549 from Riken Cell Bank (Japan).

References

Rajasekhar, K., Nizamuddin, N., Surur, A., Mekonnen, Y. 2016. synthesis, characterization, antitubercular and antibacterial activity, and molecular docking of 2,3-disubstituted quinazolinone derivatives Research and Reports in Medicinal Chemistry. Vol.615-26

synthesis of 2-phenyl-4H-benzo[d][1,3]oxazin-4-one and its Biological Activity Against A549 Cancer Cell Line through Methionyl-tRNA Synthetase Inhibition Approach on in-silico Studies.

Author: DINI KESWANA, GALIH SATRIO PUTRA, TEGAR ACHBENDZO YUNIARTA, MELANBY IKA SULISTYOWATI, SISWANDO, TUTUK BLUCIATI

Abstract: Purpose: The research aimed to synthesize 1,3-benzoxazinone ring and evaluated their anticancer activity against human lung cancer (A549) and also their molecular docking studies approach, through methionyl-tRNA synthetase inhibition. Methodology: The obtained 2-phenyl-4H-benzo[d][1,3]oxazin-4-one was evaluated by 1D NMR (1H-NMR and 13C-NMR), FTIR and UV spectra. The biological anticancer activity was evaluated by MTT assay against human lung cancer (A549). Molecular docking studies was performed using Molegro Virtual Docker (MVD) version 5.5. The molecule target was docked into the active site on Methionyl-tRNA Synthetase (MRS), that was downloaded from www.pdb.org with PDB ID 1PQG. Results: Based on the spectra data (1H-NMR, 13C-NMR, FTIR, and UV) 2-phenyl-4H-benzo[d][1,3]oxazin-4-one obtained was considered in very good yield (90 ±22% ±6%). Their anticancer activity throughout MTT assay method against A549 cancer cell line, showed the inhibitory concentration (IC50) of 65±4±2.7 µg/ml. Meanwhile, the result from molecular docking studies indicated that their rank score of -78.04 Kcal/mol was higher than its native ligand (-43.50 Kcal/mol). Conclusion: The compound 3 is potential to be developed as anticancer agent, so we need to optimize furthermore with another substituent to increase its activity toward A549 cell.

Keyword: Synthesis, anticancer, in-silico, MTT Assay, 1,3-benzoxazinone ring

Download: Request For Article

Tahun 2019- Volume 11- Special Issues (Volume 11-Supplementry Issues)

ISSN : 0975-2366
protection in the country, where it is seen only as an industry-oriented profession. IJPR is a peer-reviewed online journal which is also available in print version. The motto behind the journal is to help students, researchers and scientist worldwide to benefit from the high quality peer-reviewed articles and to their high performing works in the entire area of pharmaceutical science.

IJPR is dedicated to protect personal information and will make every reasonable effort to handle collected information appropriately. All information collected, as well as related requests, will be handled carefully and efficiently as possible in accordance with IJPR standards for integrity and objectivity.

TABLE OF CONTENTS

- 2020 - Volume 12
- 2019 - Volume 11
- 2018 - Volume 10
- 2017 - Volume 9
- 2016 - Volume 8
- 2015 - Volume 7
- 2014 - Volume 6
- 2013 - Volume 5
- 2012 - Volume 4
- 2011 - Volume 3
- 2010 - Volume 2
- 2009 - Volume 1

SPECIAL ISSUES

- Volume 11

CONTACT US

International Journal of Pharmaceutical Research:
C/O Advanced Scientific Research,
8/21 Thamotharan Street,
Ariyipalayam, Salem,

Publication Office:
Akshya Jewel Apartment,
Near JMI Women's College,
Tenali - 522 202

Email: info@ijpronline.com, synthesshub@gmail.com